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Abstract Natural languages are compositional in that themeaning of complex expres-
sions depends on those of the parts and how they are put together. Here, I ask the
following question: why are languages compositional? I answer this question by
extending Lewis–Skyrms signaling games with a rudimentary form of compositional
signaling and exploring simple reinforcement learning therein. As it turns out: in
complex worlds, having compositional signaling helps simple agents learn to com-
municate. I am also able to show that learning the meaning of a function word, once
meanings of atomic words are known, presents no difficulty.

Keywords Signaling games · Compositionality · Reinforcement learning ·
Evolution · Negation

…a singing creature, only associating thoughts with tones.
von Humboldt (1836)

1 Introduction

In the epigraph, Humboldt points to an awe-inspiring feature of human language:
that it allows us to use sensible devices to transmit thoughts across the gap between
human minds. Perhaps even more remarkable than this feat is how we accomplish it.
As Humboldt later puts it, through language we “make infinite use of finite means”
(pp. 98–99). This has been taken to be an early statement of the productivity of our
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linguistic competence, which has in turn been used to motivate the famous principle
of compositionality. Roughly:1

(C) The meaning of a complex expression is determined by the meaning of its parts
and how the parts are put together.

A sizable body of literature in philosophy and linguistics has debated the truth
of (C).2 Most arguments for (C) take the form of inferences to the best explanation:
the truth of (C) gives us the best explanation of the learnability, systematicity, and
productivity of our understanding of natural languages.3 These last two properties
refer, respectively, to the fact that anyone who understands a sentence like ‘dogs like
cats’ automatically understands ‘cats like dogs’ and the fact that competent speakers
can understand novel expressions that are built out of known simpler expressions and
syntactic rules. Here, my aim is not to evaluate any of these arguments in particular
or to answer the question of whether (C) is true. Rather, I will simply suppose that
(C) is true. Given that, I ask a further question: why is (C) true? In other words, what
explains the fact that natural languages are compositional?

At first glance, it is hard to know what form an answer to this why-question would
even take. The kind of answer I am interested in is broadly evolutionary. A crude first
pass would transform one of the above arguments for the truth of (C) into an answer
to the present question. Those arguments all take the form:

1. Our linguistic abilities have property P.
2. The best explanation for (1) is that (C).
3. Therefore, (C).

By starting at the same point but taking a different fork in the argumentative road, one
can turn this into an evolutionary argument along the following lines:

1. Our linguistic abilities have property P.
2’. That (1) would have been good for our ancestors.
3’. Therefore, linguistic abilities with property P are likely to have evolved.

Unfortunately, this general form of argument is too unconstrained. Plenty of
properties—say, the ability to run 50 miles per hour—would be good to have but have
not evolved. In addition to constraints coming from the laws of physics and ecologi-
cal pressures, the mechanisms of evolution—natural selection, in particular—operate
locally in the sense that they can only select for genetic variations already present
in a population of organisms.4 Moreover, the mechanisms for introducing variation

1 The earliest statement in the Western tradition appears to be in Frege (1923). Pagin and Westerståhl
(2010a) find a similar statement in an Indian text dating from the fourth or fifth century.
2 A related literature also focuses on making the statement of (C) more precise so as to avoid worries that
it is trivial and/or vacuous. See, for an overview, §2.1 of Pagin and Westerståhl (2010b). In what follows, I
will assume that (C) has been formulated in an appropriately more precise way.
3 For learnability, see Davidson (1964). For systematicity and productivity, see Fodor and Pylyshyn (1988),
Fodor (1987), and Fodor (1998). Some also take the principle to be a methodological one, guiding inquiry
in semantics. See Szabó (2013), Pagin and Westerståhl (2010a, b), and Janssen (1997) for overviews of all
of these proposals.
4 See chapter 3, section 5 of Bergstrom and Dugatkin (2012) for a discussion of constraints on natural
selection. Futuyma (2010) considers more constraints than just a bottleneck in variation.
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(drift, mutation, etc.) are unlikely to make every possible beneficial feature available.
Haldane (1932) puts the point quite nicely:

A selector of sufficient knowledge and power might perhaps obtain from the
genes at present available in the human species a race combining an average
intellect equal to that of a Shakespeare with the stature of Carnera. But he could
not produce a race of angels. For the moral character or for the wings he would
have to await or produce suitable mutations. (p. 110)

More generally, we can say that evolutionary answers to the why-question are
constrained by a how-question: how, actually, did natural languages come to be com-
positional? Because the kind of evidence needed to answer this question—e.g. detailed
archaeological records—is hard to come by and incomplete, the strongest constraint
will be a different how-question: how, possibly, could natural languages come to be
compositional? In this paper, I attempt to answer the why-question using models that
are simple and widely-used enough to plausibly satisfy this how-possibly constraint.
In particular, I will add a very rudimentary form of compositionality to Lewis–Skyrms
signaling games and show that compositionality can help simple agents learn to signal
in increasingly complex environments. This will exhibit a sense in which it would be
good to have a compositional language. But the model of signaling and of learning
used are simple enough that this learnability advantage could have conferred a fitness
advantage in the prehistory of our species. Thus, while the results to be presented do
not present a story about the gradual emergence of compositionality, they are likely
to be compatible with any such story.

The paper is structured as follows. In the next section, I introduce signaling games
and the simple form of reinforcement learning that I will use later. Then, in Sect. 3, I
introduce the negation game, which enriches basic signaling games with non-atomic
signals that are interpreted compositionally. Following that, Sect. 4 presents simula-
tion results of reinforcement learning in the negation game in increasingly large state
spaces. We will see that compositional interpretation only makes learning easier in
large state spaces and that how much compositionality helps learning strongly cor-
relates with the number of states. From there, I drop the assumption that negation is
built-in and ask whether the meaning of a function word can be learned. In a suitable
set-up, I am able to prove that negation is learnable and offer simulation results that
show that such learning happens very quickly. After that, I compare my work with
other proposals in the literature and conclude with some future directions.

2 Signaling Games and Reinforcement Learning

Lewis (1969) introduced signaling games to understand how stable linguistic meaning
could be conventional. In the simplest case, there are two agents—the Sender and the
Receiver—who have common interests. The Sender can see which of two states of the
world (call them s1 and s2) obtains and has two signals (call them m1 and m2) to send
to the Receiver. The Receiver cannot see which state of the world obtains, but only
which signal was sent by the Sender. Then, the Receiver can choose to perform one
of two acts (call them a1 and a2). It is assumed that a1 is appropriate in s1 and a2 in
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s2 in that both the Sender and Receiver receive a benefit if ai is performed in si , but
not otherwise. Ideally, then, the Sender will send m1 only in one state and m2 only in
the other and the Receiver will perform the appropriate act upon receiving mi . There
are two ways of this happening, corresponding to the two so-called signaling systems.
Schematically:

If we view the meaning of mi as the state(s) in which it gets sent, this shows that
the meaning depends on which signaling system the Sender and Receiver choose to
adopt.5 In this sense, it is conventional.

These ideas can be developed slightly more formally, in a way that will help for
later. Writing Δ(X) for the set of probability distributions over a finite set X , we
introduce a string of definitions.

Definition 1 (Signaling Game) A signaling game is a tuple 〈S, M, A, σ, ρ, u, P〉 of
states, messages, acts, a sender σ : S → Δ(M), a receiver ρ : M → Δ(A), a utility
function u : S × A → R, 6 and a distribution over states P ∈ Δ(S). σ and ρ have a
common payoff, given by

π (σ, ρ) =
∑

s∈S

P(s)
∑

a∈A

u (s, a) ·
(

∑

m∈M

σ (s) (m) · ρ (m) (a)

)
(1)

We will also refer to π (σ, ρ) as the communicative success rate of σ and ρ. If σ is
not probabilistic but rather a deterministic function, we call it a pure sender. Mutatis
mutandis for ρ and receiver.

The most well-studied class of signaling games are generalizations of the two-state
game described above, where there is an equal number of states, signals, and acts,
with exactly one act appropriate for each state. I will call these Atomic n-games.

Definition 2 (Atomic n-game) The Atomic n-game is the signaling game where |S| =
|M | = |A| = n, u(si , a j ) = 1 iff i = j , 0 otherwise, and P (s) = 1/n for every
s ∈ S.

5 This corresponds to one of two types of informational content for a signal identified in chapter 3 of
Skyrms (2010) and reflects the idea that a proposition is a set of possible worlds.
6 In not having the utility function depend on the signal sent, we are assuming that no signal is more costly
to send than any other.
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Definition 3 The Lewis game is the Atomic 2-game.

Definition 4 A signaling system in a signaling game is a pair (σ, ρ) of a sender and
receiver that maximizes π (ρ, σ ).

The reader can verify that the two signaling systems depicted at the beginning of this
section are indeed the only ones in the Lewis game according to this definition. In fact,
they are the only two strict Nash equilibria of the Lewis game. More generally, Trapa
and Nowak (2000) show that the Atomic n-game always has strict Nash equilibria, all
of which have the following form. By currying, we can view σ as an n × n stochastic
matrix S, with Si j = σ (si )

(
m j

)
and ρ as an n × n stochastic matrix R, with Rkl =

ρ (mk) (al). Then: (σ, ρ) is a stict Nash equilibrium iff S is a permutation matrix7 and
R = ST .8 These strict equilibria have π (σ, ρ) = 1, which is the maximum value that
π (σ, ρ) can obtain. There are, however, other Nash equilibria in the Atomic n-game
which have lower communicative success rates.

2.1 Reinforcement Learning in Signaling Games

Lewis’ full analysis of conventional meaning in terms of signaling systems makes
strong assumptions about common knowledge and rationality of the Sender and
Receiver. Thus, while it provides a nice conceptual analysis, it cannot offer an expla-
nation of how agents might arrive at or come to use a signaling system. In a long series
of work, Skyrms (1996, 2004, 2010) and colleagues have weakened these assump-
tions and explored various dynamic processes of learning and evolution in the context
of signaling games. Here, I outline one exceedingly simple form of learning called
Roth–Erev reinforcement learning.9

Now, instead of the signaling game being played once, we imagine a Sender and
Receiver repeatedly playing the game. We also imagine that each is equipped with
some urns: the Sender has an urn for each state with balls in it labeled by signals, while
the Receiver has an urn for each signal with balls in it labeled by acts.When the Sender
finds out what state obtains, it draws a ball from the corresponding urn and sends the
signal written on the ball. When the Receiver hears the signal, it draws a ball from
the corresponding urn and performs the act written on the ball. We assume initially
that each urn has one ball of every appropriate kind. If the act was appropriate for the
state, the Receiver adds a ball of that act to the signal’s urn and the Sender adds a ball
of that signal to the state’s urn. Otherwise, nothing happens. The addition of balls of
the same type after successful play of the game makes it more likely that the same
choices will be made given the same state of affairs in the future, thus reinforcing the
choices that led to successful signaling. In the context of the how-possibly constraint
mentioned in the introduction, it must be noted that Schultz et al. (1997) show that

7 Amatrix with only 1s and 0s, where each row has a single 1 and distinct rows have 1s in distinct columns.
8 Here, MT denotes the transpose of M , i.e.

(
MT

)

i j
= M ji .

9 See Roth and Erev (1995). Sutton and Barto (1998) provides a detailed introduction to reinforcement
learning.
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dopamine neurons in certain areas of primate brains appear to implement a similar
reinforcement learning procedure.10

Slightly more formally and generally,11 we keep track of the accumulated rewards
of the players’ choices. That is, we have functions arσ,t : S × M → R and arρ,t :
M × A → R. At t = 0, these are set to some initial values, usually 1. They are then
incremented by

arσ,t+1
(
si , m j

) = arσ,t
(
si , m j

) + u (si , ak)

arρ,t+1
(
m j , ak

) = arρ,t
(
m j , ak

) + u (si , ak)

where si , m j , and ak were the state, message, and act played at time t . How, though,
do the Sender and Receiver choose their signals and acts? The simple idea captured
by the urn metaphor is that they do so in accord with their accumulated rewards; that
is, to the extent that those choices have been successful in the past. In other words:

σt+1 (si )
(
m j

) ∝ arσ,t
(
si , m j

)

ρt+1
(
m j

)
(ak) ∝ arρ,t

(
m j , ak

)

The simplicity of this learning method does not prevent it from being effective. Con-
sider, first, the Lewis game. In simulations with every urn containing one ball of
each type and payoffs equaling one, after 300 iterations, the Sender and Receiver
have π (σ, ρ) ≈ 0.9 on average.12 In fact, for this simplest case, one can prove that
Roth–Erev learning converges to a signaling system.

Theorem 1 (Argiento et al. 2009) In the Lewis game, with probability 1,

lim
t→∞ π (σt , ρt ) = 1

Moreover, the two signaling systems are equally likely to occur: with probability 1/2,

0 = lim
t→∞

σt (s1, m1)

σt (s1, m2)
= lim

t→∞
σt (s2, m2)

σt (s2, m1)
= lim

t→∞
ρt (m1, a1)

ρt (m1, a2)
= lim

t→∞
ρt (m2, a2)

ρt (m2, a1)

while with probability 1/2, the limits of the reciprocals are 0.

When considering the Atomic n-game for larger n, simulations have somewhat mixed
results. Barrett (2006) finds that for n = 3, 4, after 106 iterations, agents have
π (σ, ρ) > 0.8 at rates of .904 and .721, respectively. For n = 8, that number drops to
.406. Nevertheless, the agents always perform significantly better than chance. I will
present my own simulation results for this situation later and so do not dwell on them

10 That seminal paper has spanwed a large body of research. See Schultz (2004) and Glimcher (2011) for
overviews.
11 For instance, the ball-in-urn metaphor essentially assumes that the utility function only has integer
values.
12 See Skyrms (2010), p. 94.
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here. Analytically, Hu et al. (2011) show that there is a large class of non-strict Nash
equilibria of the Atomic n-game (the so-called partial pooling equilibria) to which
Roth–Erev learning converges with positive probability.13

3 The Negation Game

Having seen the basics of signaling games and reinforcement learning, we are in a
position to use these tools to answer our original question: why would compositional
languages arise? To address this question, we first need to extend the Lewis–Skyrms
signaling games to handle rudimentary forms of compositional signaling. In particular,
we will focus on having a signal corresponding to negation.

To get an intuition for how the model will work, consider vervet monkeys.14 These
monkeys have three predators: leopards, eagles, and snakes. It turns out that they have
three acoustically distinct signals—a bark, a cough, and a chutter—that are typically
sent only when a predator of a particular type is present. Moreoever, when a vervet
receives one of the signals, it appears to respond in an adaptive way: if it hears a bark,
it runs up a tree; if a cough, it looks up; if a chutter, it looks down. Schematically, their
behavior looks like:

As the diagram above suggests, a signaling system in the Atomic 3-game provides a
natural model for this signal/response behavior.

More speculatively, suppose that a vervet on the ground saw that a group-mate had
run up a tree as if a leopard were present. The vervet on the ground, however, knows
that no leopard is present. It would be useful if it could signal such a fact to the monkey
in the tree so that it would come down and the group could get on with its business.
To signal that no leopard was present, the vervet on the ground could attempt to use
a completely new signal. Alternatively, it could send a signal along the lines of “no
bark”, relying on the fact that the other vervets already know how to respond to barks.
This latter solution seems prima facie superior since it leverages the existing signaling
behavior. Moreover, Zuberbühler (2002) finds a syntax of exactly this simple kind
in Campbell monkeys: they have alarm calls for leopards and eagles, which can be
prefixed with a low ‘boom boom’ sound to indicate that the threat is not immediate.15

13 Similar results hold for the closely related replicator dynamics. See Huttegger (2007), Pawlowitsch
(2008). Hofbauer and Huttegger (2008, 2015) study the replicator-mutator dynamics for these games.
14 See Seyfarth et al. (1980).
15 See Schlenker et al. (2014) for a detailed semantic analysis of this form of signaling. They in fact find
that the basic alarm calls have roots with a morphological suffix.
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That some monkeys have such syntax makes it plausible that the following model will
fit well with theories of the gradual emergence of compositionality.

To model signaling behavior of this sort, let us introduce the negation game. For a
given n, there are 2n states and acts with the same utility function as in the Atomic
2n-game. Now, however, instead of all messages being simple/atomic, the Sender can
also send a sequence of two signals. The Sender has n “basic” signals m1, . . . , mn and
can also send signals of the form �mi for some new signal � and 1 ≤ i ≤ n. Now,
in the extended vervet case, and with negation in general, there are certain logical
relations among the states. The model here will capture a few basic intuitions about
the relations imposed by negation:

– Every state has a negation.
– The negation of a state is distinct from the state.
– Distinct states have distinct negations.

The relevant mathematical notion capturing these intuitions is that of a derangement:
this is a bijection (a one-to-one and onto function) with no fixed points, i.e., no x such
that f (x) = x .16 So, writing [n] = {1, . . . , n}, we also assume that we are equipped
with a derangement f : [2n] → [2n].17 We will consider f as a function on both the
states and acts by writing f (si ) := s f (i) and f (ai ) := a f (i). Two examples of state
spaces with derangements may be illuminating.

Example 1 There are six states: for each of a leopard, snake, and eagle, one state
indicates the presence and another the absence thereof. The function sending presence
states to the corresponding absence state and vice versa is a derangement, depicted
here:

Example 2 Let W be a set of worlds. Then P (W ), the set of subsets of W , is the set
of propositions based on those worlds. Set complement is a derangement on P (W ),
often used to specify the meaning of negation: �¬ϕ� = W \ �ϕ�.

These examples show how the notion of a derangement captures the minimal core of
negation in terms of the three intuitions above. Because of this, I will use the term

16 See Hassani (2003) for the definition and applications.
17 To fully model classical logical negation, we would also need to require that f is an involution, i.e.
that f ( f (i)) = i . But since our syntax is so impoverished that sending a “double negation” signal is not
possible, we can omit this requirement. It is also doubtful that natural language negation satisfies double
negation elimination. This remark about involutions does, however, explain why we have 2n states and
acts: a permutation that is an involution will only have cycles of length ≤2. And being a derangement
requires that there are no cycles of length 1. Together, this means that [n] only has derangements which are
involutions if n is even.
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‘minimal negation’ in this context. The question now becomes: how can the Sender
and Receiver exploit this structure to communicate effectively?

First, consider the Sender. For simplicity, let us suppose that this is a pure sender,
so that it always sends one signal in each state. Without loss of generality, we can
even suppose that it sends mi in si . Nature might inform the Sender, however, that
state sk obtains for some k > n. What signal, then, should it send? We can use the
derangement f which captures the idea of minimal negation. For some i , sk = f (si ).
The Sender will therefore send �mi . To put it more formally in order to foreshadow
the generalization to a Sender using a mixed strategy, σ ( f (si )) = �σ (si ).

What about theReceiver? Itwill “interpret”� as aminimal negation in the following
way. When it receives a signal �mi , it looks at the act it would take in response to
mi . Suppose that’s ai . Instead, however, of taking that act, it performs f (ai ). Again,
to put it formally: ρ (�mi ) = f (ρ (mi )). Here already we see the rudiments of
compositionality: a complex signal is ‘interpreted’ as a function of the interpretation
of its part. Now, consider a Sender and Receiver playing in this way. If sk obtains, the
Sender sends �mi . The Receiver then will play f (ρ (mi )) = f (ai ) = ak , which is
the appropriate act.

This simple model shows how sending signals corresponding to minimal negations
can enable the Sender and Receiver to achieve communicative success in a large and
logically structured state space. As presented, however, we required that both agents
played pure strategies and that they had an agreement on the meanings of the basic
signals.Wecangeneralize the abovedefinitions to allow formixedSender andReceiver
strategies. Once we have done that, we can use Roth–Erev reinforcement to try and
learn those strategies.

Definition 5 (Negation n-game) A Negation n-game is a tuple 〈S, M, A, σ, ρ, u, P,

f 〉 where |S| = |A| = 2n, f : [2n] → [2n] is a derangement, and u
(
si , a j

) = 1 iff
i = j , 0 otherwise. M = {m1, . . . , mn} ∪ {�mi : 1 ≤ i ≤ n}. Moreover, we require
that:18

σ
(

f
(
s j

))
(�mi ) ∝ σ

(
s j

)
(mi ) (2)

ρ (�mi )
(

f
(
a j

)) = ρ (mi )
(
a j

)
(3)

Payoffs are given by (1) as before.

We can understand these constraints in terms of the urn model described above.
Consider, first, the Sender. Now, the Sender’s urns also contain balls labelled �. If
one of these balls is drawn from an urn (say, s j ), then the Sender looks at the urn for
f −1

(
s j

)
, draws a non-� ball (say, mi ) and then sends �mi . This Sender behavior

exactly implements the constraint (2). The Receiver’s behavior is even simpler: for
signals of the form mi , it simply draws a ball from the appropriate urn as before.

18 Or equivalently:

σ
(
s j

)
(�mi ) ∝ σ

(
f −1 (

s j
))

(mi )

ρ (�mi )
(
a j

) = ρ (mi )
(

f −1 (
a j

))
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When, however, encountering a signal�mi , the Receiver draws a ball from the mi urn
(labelled, say, ak) and then performs f (ak). This Receiver behavior exactly imple-
ments the constraint (3). In this way, the Sender uses and the Receiver interprets � as
minimal negation. Given this model of behavior, implementing Roth–Erev reinforce-
ment learning for the Negation n-game is as simple as reinforcing all the choices made
in a given iteration. That is, we perform the following reinforcements:

arσ,t+1
(
s j ,�

) = arσ,t
(
s j ,�

) + u
(
s j , f (ak)

)

arσ,t+1

(
f −1 (

s j
)
, mi

)
= arσ,t

(
f −1 (

s j
)
, mi

)
+ u

(
s j , f (ak)

)

arρ,t+1 (mi , ak) = arρ,t (mi , ak) + u
(
s j , f (ak)

)

Learning in the Negation n-game provides a model to answer the following question:
given the ability to use a signal tomeanminimal negation, can the Sender and Receiver
learn how to use the atomic words to communicate effectively?

4 Experiment

We are now in position to test whether compositional languages are in some sense
better. In particular, we will ask whether such languages are easier to learn than lan-
guages with only atomic signals. Consider again Example 1, where the vervets want
to communicate about both the presence and absence of leopards, snakes, and eagles.
Prima facie, it seems like having minimal negation around would make learning eas-
ier: once signals for the three predators are known, the signals for their absence are
also automatically known by prefixing with the negation signal. By contrast, with only
atomic signals, three new unrelated signals would need to be introduced to capture the
states corresponding to the lack of each predator. Of course, similar thoughts apply
for more or fewer than three predators, so I will compare atomic versus compositional
languages when there are different numbers of states.

4.1 Methods

To test the hypothesis that compositional languages will be easier to learn, I ran 100
trials of Roth–Erev learning for each of the Atomic 2n-game and the Negation n-
game for each n ∈ {2, 3, 4, 5, 6, 7, 8}. The initial value of accumulated rewards was
1 for every argument. Similarly, u

(
si , a j

) = 1 when i = j . Each trial consisted of
10,000 iterations. This relatively low value was chosen so that differences in speed
of learning may also be apparent. I measured π (σ, ρ) for each trial at the end of
the iterations of learning. The code for running these simulations and performing the
data analysis, in addition to the actual data, may be found at http://github.com/shanest/
learning-evolution-compositionality. LetAtom2n (respectively,Negn) refer to the set
of 100 such payoffs of the Atomic 2n-game (respectively, Negation n-game). I will
use (·) to refer to the mean of a set of values.
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Table 1 Means and t tests for Roth–Erev reinforcement learning

n 2 3 4 5 6 7 8

Atom2n 0.914 0.863 0.819 0.758 0.699 0.617 0.506

Negn 0.851 0.816 0.786 0.746 0.706 0.661 0.605

Diffn −0.064 −0.046 −0.033 −0.013 0.007 0.044 0.099

t 3.666 3.461 2.897 1.117 −0.724 −4.825 −10.88

p 0.0003 0.0007 0.0042 0.2654 0.4698 0.000003 0.6e−22

Fig. 1 Fitting a line to Diffn

4.2 Results

To measure the effectiveness of Roth–Erev learning, the mean payoffs of the trials of
each game for each n were computed.Welch’s t test was used to test the hypothesis that
those means are different. These results are summarized in Table 1, where Diffn =
Negn − Atom2n .

To measure the effect, if any, of n on the effectiveness of Roth–Erev learning in
the two types of game, a simple linear regression of Diffn on n was run. This yielded
r = 0.9658 and p = 0.00041, indicating a very strong positive linear correlation.
Figure 1 shows the line of best fit overlayed on the data.

4.3 Discussion

There are two main take-aways from these results. First, having a compositional lan-
guage does not always make learning easier. To see this, note that a negative value
of Diffn means that agents learn to communicate more successfully with the atomic
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language than with the minimal negation language for that value of n. This occurs for
n = 2, 3, 4, 5.Moreover, the p values from theWelch’s t test show that for n = 2, 3, 4,
this difference in mean success is in fact statistically significant. Thus, when there are
not many states (4, 6, and 8 respectively) for the agents to distinguish, an atomic
language is easier to learn. By the time we reach n = 7 (14 states), however, the
agents using a compositional language do perform statistically significantly better, as
evidenced by the positive value for Diff7 and the very low p value there. This trend
also continues for the n = 8 (16 state) case.

This leads to the second observation: the very strong positive correlation between
n and Diffn (r = 0.9658) shows that it becomes increasingly more advantageous
from a learning perspective to have a compositional language as the number of states
increases. Thinking of the number of states as a proxy for the complexity of the world
about which the agents must communicate, we can summarize these two results in
a slogan: compositional signaling can help simple agents learn to communicate in a
complex world.

Taken together, these results present a precise model identifying one ecological
pressure that could explain the evolution of compositionality: the need to communicate
about a large number of situations. Moreover, the surprising fact that compositional
languages only confer a learning benefit in large state spaces shows another sense in
which the crude evolutionary arguments from the introduction are too unconstrained.
Recall that premise (2’) claimed that, for example, productive understanding would
have been ‘good’ for our ancestors. Perhaps one could even have identified the sense of
goodness with learnability. These simulations, however, show that the situation is not
so simple: the sense in which a compositional language is good depends very strongly
on the size of the state space. One could not have figured that out without analysis of
the kind presented here.

Note that this experiment examined only the most rudimentary form of composi-
tional semantics. Nevertheless, the fact that this form only exhibited advantages in
a suitably complex world suggests that even more sophisticated languages (with, for
instance, binary operators and a partially recursive syntax) will only be advantageous
when the world in which the agents are embedded also is substantially more complex.
Moreover, that compositionality only confers an advantage in large state spaces may
explain why it is rare in the animal kingdom: many species may not have pressure to
talk about many different situations.

5 Learning Negation

While the above experiment shows how having a rudimentary form of compositional
signaling can be beneficial, it leaves open the question: where did the compositional
signaling come from? That is, can the agents learn to use a signal as negation?

To model the learning of negation itself, we need to relax the definition of the
Negation n-game so that the Sender must learn how to use � and the Receiver must
choose how to interpret the signal�. Instead of putting one derangement in the model,
we will put in a whole set of functions F . The Receiver will have distributions over
the acts for each basic signal and a distribution over F for �. Its choice on how to
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interpret �mi will directly refer to this latter distribution which reflects how it will
interpret � as a function.

Definition 6 (Functional n-game) A Functional n-game is a tuple 〈S, M, A, σ, ρ, u,

F〉where S, M , A, andu are as in the definitionof aNegationn-game (seeDefinition5).
F is a set of functions [2n] → [2n] (not necessarily bijections).We require that exactly
one g ∈ F is a derangement. For the Receiver, we require that

ρ (�mi )
(
a j

) =
∑

g∈F
ρ (�) (g) ·

∑

k:g(k)= j

ρ (mi ) (ak) (4)

Intuitively, this constraint captures the following behavior. The Sender no longer uses
� explicitly as minimal negation; its behavior is unspecified. Now, instead of the
Receiver automatically interpreting � as minimal negation, it first chooses a function
by which to interpret it. In terms of the urn models, the Receiver now has another urn
labeled �. Balls in this urn, however, are labeled with functions g ∈ F . When the
Receiver receives a signal �mi , it draws a function g from the � urn, an act ai from
the mi urn, and performs g(ai ). Constraint (4) exactly captures that behavior. Note
that whenF is a singleton containing a lone derangement f , Constraint (4) reduces to
Constraint (3) because ρ (�) ( f ) = 1 and there will be only one k such that f (k) = j
since f is a bijection.

To look at the emergence of minimal negation, we want to capture a natural idea
about how agents would learn to use a function word: they are already capable of
communicating with atomic signals and then try to introduce the functional element.
To model this kind of situation, we need a few more definitions. As before, let S be a
set and f a derangement on S. Call a set X ⊂ S complement-free iff X ∩ f [X ] = ∅.
If X is a maximal complement-free subset (in the sense of not being contained in
another complement-free set), we will call it a complementizer of S. As an example of
a complementizer, note that both the sets {leopard, eagle, snake} and its complement
are complementizers with respect to the derangment mentioned in Example 1 above.
Note that if |S| = 2n, then all complementizers of S have cardinality n. For a set S of
size n and a subset I ⊆ [n], write S � I = {si : i ∈ I }.

The situation we are interested in is the following: the agents are playing a Func-
tional n-game. For some complementizer X of [2n] with respect to the derangement
f ∈ F , σ and ρ in addition constitute a signaling system on the subgame generated
by S � X and A � X in which σ only sends basic signals from {m1, . . . , mn}. In
this setting, the Sender needs to choose when to send complex signals �mi and the
Receiver needs to choose how to interpret�.Wewill suppose that theReceiver chooses
between a few natural responses to hearing new signals with�. The Receiver might (a)
ignore �, (b) treat � as a new atomic word, or (c) treat � as minimal negation. These
options can be modeled by different functions: (a) corresponds to the identity function
id( j) = j , (b) to a constant function ci ( j) = i and (c) to a derangement f . Therefore,
to model the Receiver choosing among these natural options for interpreting �, we
assume that F contains exactly those three functions.

Call a Functional n-gamewith the above restrictions a basic negation learning setup
of size n. Our question now is: does simple Roth–Erev reinforcement learning allow
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the Sender to start using� like minimal negation and the Receiver to learn to interpret
� as minimal negation? We answer this question using both analytic and simulation
results.

5.1 Analytic Result

It turns out that in this setup, we can actually prove that Roth–Erev learning works.

Theorem 2 In a basic negation learning setup of size n, if i ∈ X for the ci ∈ F , then:

1. With probability 1, for the derangement f , limt→∞ ρt (�) ( f ) = 1. In other
words, the probability that � is interpreted as minimal negation by the Receiver
converges to 1.

2. With probability 1, σ converges to a strategy where Constraint (2) holds. In other
words, with probability 1, the Sender learns to use � as minimal negation.

Proof Theorem 4 of Beggs (2005) states that probabilities and empirical frequencies
converge to 0 for strategies which do not survive iterated removal of strictly dominant
strategies (when there are a finite number of players and actions) under Roth–Erev
learning.

For the first part, this means that it suffices to show that choosing the derangement
f is strictly dominant for the Receiver. To see this, note that σ only sends signals of
the form �mi for states in f [X ]. If the Receiver chooses ci , then, the payoff will be
0 since i ∈ X . Similarly, since mi is only sent in si ∈ X , if the Receiver chooses id, it
will perform an act in A � X and so receive a payoff of 0. Choosing the derangement
is thus strictly dominant.

For the second part, recall that in a basic negation learning setup, σ and ρ are a
signaling system on the subgame restricted to the complementizer X . This means that
for si ∈ X , w.l.o.g., σ (si ) (mi ) = 1. Now, consider f (si ). We must show that �mi

is the only signal that survives iterated removal of dominant strategies. Suppose that
σ sends a basic signal m j in f (si ). By assumption, for some k ∈ X , ρ

(
m j

) = ak �=
f (ai ) since i ∈ X and X ∩ f [X ] = ∅, so the payoff is 0. So no basic signal survives.
Now, since we know that the Receiver will interpret � as f , only �mi will lead to the
Receiver performing f (ai ) and to the Sender receiving a positive payoff.We thus have
that σ ( f (si )) (�mi ) converges to 1, which yields (2) above because σ (si ) (mi ) = 1.

��
This proof depends on the assumption that i ∈ X . If i ∈ f [X ], then choosing f is

only weakly dominant over choosing ci and so the result of Beggs (2005) no longer
applies. For this reason, and because the above convergence result does not tell us
about rate of convergence, I also ran simulations of the basic negation learning setup.

5.2 Simulation Results

I ran 100 trials of only 1000 iterations of the basic negation learning setup for each
n ∈ {2, 3, 4, 5, 6, 7, 8} both with i ∈ X and i ∈ f [X ]. Table 2 shows the average
payoffs and probability of interpreting � as negation after the 100 trials.
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Table 2 Statistics for Roth–Erev reinforcement in the basic negation learning setup

n 2 3 4 5 6 7 8

i ∈ X π (σ, ρ) 0.995 0.989 0.978 0.962 0.937 0.899 0.855

ρ (�) ( f ) 0.995 0.995 0.995 0.994 0.993 0.993 0.991

i ∈ f [X ] π (σ, ρ) 0.904 0.875 0.870 0.818 0.821 0.756 0.701

ρ (�) ( f ) 0.816 0.844 0.807 0.666 0.922 0.760 0.830

These results show two things. First, learning happens very fast in this setup. This
holds especially true for the Receiver, who has uniformly high values for ρ (�) ( f )

in the i ∈ X case. The Sender appears to need more time to fully learn its strategy
in the large state spaces. Second, having i ∈ f [X ] does result in lower values for
both the payoff and for ρ (�) ( f ). Moreover, t tests show that all of these differences
are in fact statistically significant. This provides some initial reason to doubt that
Theorem 2 generalizes to the case when i ∈ f [X ]. Nevertheless, the Theorem and
these simulations show that the task of learning the meaning of a function word when
the meanings of atoms are known is rather easy even for very simple learners.

6 Comparison to Other Work

While the present paper does present a precise answer to the question of why natural
languages are compositional, it is not the first to attempt to do so. Therefore, I will now
discuss a few earlier proposals from the literature. In each case, I find that something
distinctive about the nature of function words has been left out.

Nowak and Krakauer (1999) study the emergence of compositionality via a kind
of natural selection of signal-object pairings. For our purposes, the most interesting
case is their last, where they consider a state space consisting of pairs of two objects
and two properties, for four total combinations. These combinations can be specified
by four atomic words w1, w2, w3, w4 or with pairs pi o j . Nowak and Krakauer con-
sider a strategy space where players use the atomic words with probability p and the
‘grammatical’ constructs with probability 1 − p. They are able to show that the only
two evolutionary stable strategies are when p = 0 and p = 1 and that their evolu-
tionary dynamics evolves to use the grammatical rule with probability 1. In trying to
use syntactic structure to mirror structure in the state space, the present approach does
have something in common with Nowak and Krakauer’s. There are, however, two
reasons that their proposal does not go far enough. First, they only analyze mixtures
of a single atomic and a single compositional signaling system but do not analyze
whether one or the other form of signaling makes it easier to arrive at a signaling
system. One would like a dynamic that considers more than two possible signal-state
mappings. Secondly, they are not explicitly interested in function words but only in
subject-predicate structure. Both models are needed for a full story of the evolution of
complex signaling: their emphasis is on the structure of minimally meaningful signals,
while mine is on how function words can be used to modify the meanings of already
meaningful signals.
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In a series of papers, Barrett (2006, 2007, 2009) considers ‘syntactic’ signaling
games with reinforcement learning where the number of states and acts exceeds the
number of signals but where there is more than one sender. These are equivalent to
games in which there is one sender who sends a sequence of signals for each state (the
length of the sequence is fixed and the strategies are independent for each position in
the sequence). Perfect signaling is achieved when sender-receiver strategies settle on
a coding system with a sequence that elicits the ideal act in each state. For example,
consider the 4-state case with 2 senders, each of which has 2 signals. An example
of optimal signaling behavior has Sender 1 use m1 in {s1, s2} and m2 in the other
two states, while Sender 2 uses m1 in {s1, s3} and m2 in the other two states. If the
Receiver can take the intersection of the sets of states indicated by the two messages
received, it can learn the exact state and so perform the correct act. Barrett found that
in simulations involving 4-state, 4-act, 2-signal, 2-sender signaling games, successful
signaling19 is achieved by reinforcement learning approximately 3/4 of the time and
that in 8-state, 8-act, 2-signal, 3-sender games, successful signaling is achieved 1/3 of
the time.

The difference, then, between this approach and our own is that there is no explicit
signal that serves as a function word in Barrett’s set-up; rather, signal concatenation
is implicitly treated like conjunction. Of course, natural language contains many such
function words, meaning that his model cannot provide a full account of the emer-
gence of natural language compositionality. Moreover, as Franke (2014) observes, the
Receiver in a syntactic game appears to not actually interpret length-2 signals com-
positionally: “Although we can describe the situation as one where the meaning of a
complex signal is a function of its parts, there is no justification for doing so. A simpler
description is that the receiver has simply learned to respond to four signals in the right
way” (p. 84). In other words, the Receiver’s dispositions treat the complex signals as
if they were atomic. Nevertheless, there is some similarity between the present paper
and Barrett’s work. The task in Experiment 1 can now be recast as the Sender having
to learn a complementizer X on the state space. The simulation results show that this
is actually a somewhat harder task than learning two complementary partitions.

A final proposal comes from Franke (2014) where the explicit concern is with using
reinforcement learning in signaling games to explain compositional meanings. Franke
adds ‘complex’ signals of the form m AB (as well as ‘complex’ states of the form sAB).
Formally, these are just new atomic signals. The sense in which they bear a relation
to the basic signals is captured in a distance s = d(m AB, m A) = d(m AB, m B) which
intuitively represents a kind of similarity (and similarly for the set of complex states of
the form sAB). Franke modifies Roth–Erev learning by incorporating (i) spill-over and
(ii) lateral inhibition. Spill-over refers to the fact that non-actualized message/state
pairs (for the sender) are reinforced in proportion to their similarity to the played one
(and similarly for the receiver). Lateral inhibition involves lowering the accumulated
rewards for non-actualized pairswhen the actualized pairwas successful. Franke shows
that with these two modifications, creative compositionality can arise in the following
sense: if Sender/Receiver play only using ‘basic signals’, they can still learn to have

19 For Barrett, this means π (σ, ρ) > 0.8.
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σ (sAB) (m AB) > σ (sAB)
(
m j

)
for all m j �= m AB and so on for the other complex

states and signals. Since the ‘complex’ signal is the one most likely to be sent when
the ‘complex’ state is seen for the first time, this purportedly captures creativity: using
a new signal for a new state.20

There are two main differences between Franke’s work and the present approach.
First, in his model, signals do not have genuine syntactic structure which then gets
compositionally interpreted. One does not find complex signals with words treated
like function words as one does in the Negation n-game. Secondly, his model claims
to provide an explanation for the emergence of compositional signaling, whereas the
present paper has simply identified an evolutionary advantage that compositional sig-
naling would confer. One would like a model that incorporates both of these aspects:
a story about the emergence of genuinely syntactically structured signals with com-
positional interpretation.

7 Conclusion and Future Directions

In this paper, I have offered a potential story that answers the question of why natural
languages are compositional by enriching signaling games with the most rudimentary
form of compositionality and exploring basic learning of such languages. The current
answer is that compositional languages help simple agents learn to communicate
more effectively in a complex world. I also demonstrated that learning the meaning
of a function word after knowing the meanings of atomic words is not difficult.

While these two strands present a promising start to answering the why-question,
much more work remains to be done in the future. Firstly, there are areas of the para-
meter space of the current games that remain to be explored. For instance, in what
ways are the simulation results robust against the form of the utility function? Is there
an independently motivated but wide class of such functions for which the results still
hold? Secondly, one might wonder about other and more complex forms of composi-
tionality. Can different languages be compared in order to find out whether different
kinds of compositional language are better in different circumstances? Similarly, it
is natural to continue extending the approach here to languages with multiple logical
operators of varying arities (conjunction, for instance) and to start adding amore recur-
sive syntax. Finally, considering such richer forms of compositional signaling might
also require exploring more sophisticated learning algorithms than the very simple
reinforcement learning considered here.
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